

Andrew Gostine, MD, MBA

Chief Executive Officer

Remote Nursing

A 36-Hospital Time and Motion Study: How Do Medical-Surgical Nurses Spend Their Time?

The Permanente Journal/ Summer 2008/ Volume 12 No. 3 (https://www.issuelab.org/resources/8134/8134.pdf)

Nursing Activities by Time		
Documentation	35.3%	147.5 min
Care Coordination	20.6%	86 min
Patient Care	19.3%	81 min
Medication Administration	17.2%	72 min
Patient Assessment	7.2%	31 min

233.5 minutes back on top of 184 of work (127% increase in clinical productivity)

Eliminating just 70 min of documentation/care coordination yields a 20% productivity gain:

- 1. Solves the \sim 20% nursing shortage
- 2. Improves patient satisfaction
- 3. Improves nursing satisfaction
- 4. Improves patient outcomes

Remote Nursing Playbooks

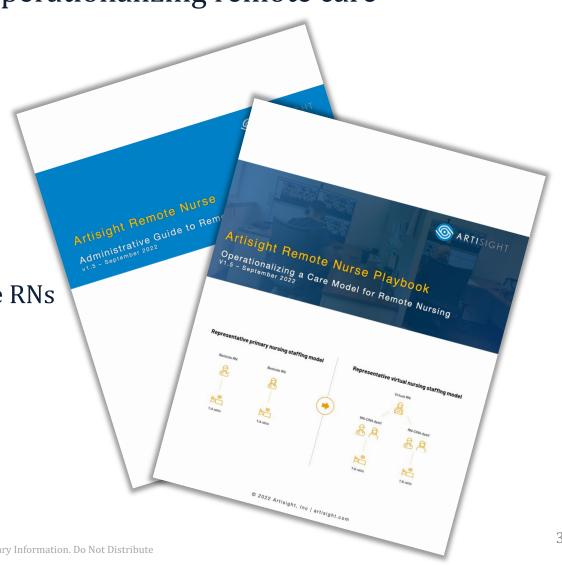
Change Management – A user manual for operationalizing remote care

Administrator Playbooks – VPs, C-suite

- Remote Nurse JD
- Staffing Models Hybrid vs Fully Remote
- Working Group Composition
- Medico-Legal FAQs

Nurse Playbook - Nurse Managers, Bedside/Remote RNs

- Roles/Responsibilities
- Day Shift vs Night Shift Workflows
- Nursing Specialty-Specific Workflows
- Training Plan
- Role Play Scenarios



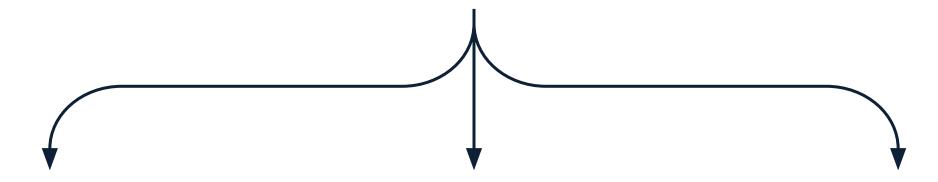
Remote Nursing Analytics

Care Transformation Analytics

- 1. How many calls by hour of day
- 2. Average call duration
- 3. Peak demand periods and forecasting
- 4. Type of calls (audio only or audio and video)
- 5. Calls initiated by the bedside nurse vs the remote nurse
- 6. Interface interactions per hour

All the metrics needed to optimize the remote nursing program for scale

Scaling Remote Care Teams



Ambient Documentation

- 1. Flow Sheet
- 2. I/O's
- 3. Patient Turns
- 4. Vitals
- 5. Staff Duress

Ambient Monitoring

- 1. Falls Prevention
- 2. Pressure Ulcer Prevention
- 3. Vital Signs Monitoring
- 4. Device Interventions
 - IV Pumps
 - Ventilators
- 5. Hand Hygiene
- 6. Sepsis/Delirium*

Staff Monitoring & Documentation

- 1. Admissions
- 2. Discharges
- 3. Patient Education
- 4. Care Coordination

Ambient Nursing Documentation

Speech Transcription

Sarah Ryan, RN: "Ok Artisight, document patient turn left. Bolster placed under right shoulder"

Patient Turn Documentation

Patient: Mathew Zleczewski

Date: 7/30/24

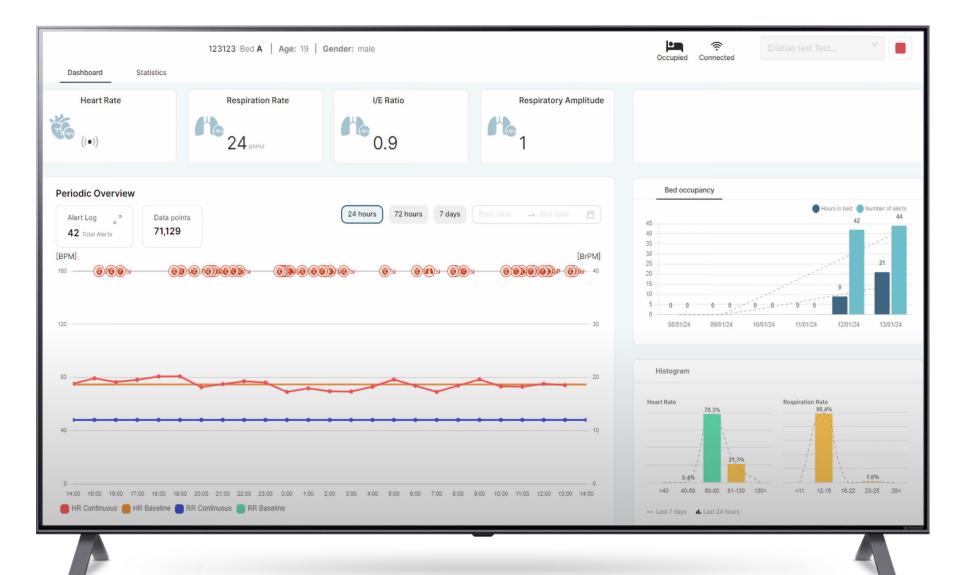
Patient Turn: Left

Bolster: Yes

Location: Right shoulder

Say "Confirm Documentation" to write to patient record.

Ambient Vital Signs Monitoring



Ambient Device Monitoring

MASTER SERVICES AGREEMENT

ICMMasterAgreement 4544

This MASTER SERVICES AGREEMENT ("Agreement") is entered into as of 2024-09-01, (the "Effective Date"), by and between Becton, Dickinson and Company, on behalf of itself and its world-wide affiliates, with a principal office located at 1 Becton Drive, Franklin Lakes, NJ 07417 ("BD") and Artisight, Inc., with a principal place of business located at 1658 N. Milwaukee Ave. STE B PMB 5661, Chicago, IL 60647-5652 ("Supplier"). BD and Supplier are referred to herein collectively as the "Parties" and individually as a "Party."

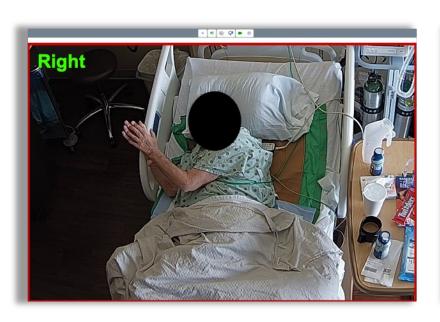
The Parties, intending to be legally bound, hereby agree as follows:

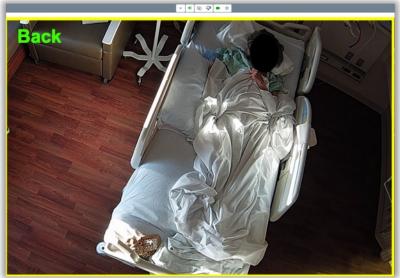
1. Definitions.

For the purposes of this Agreement, the following terms have the meanings set forth below:

Fall Prevention

Pressure Ulcer Prevention

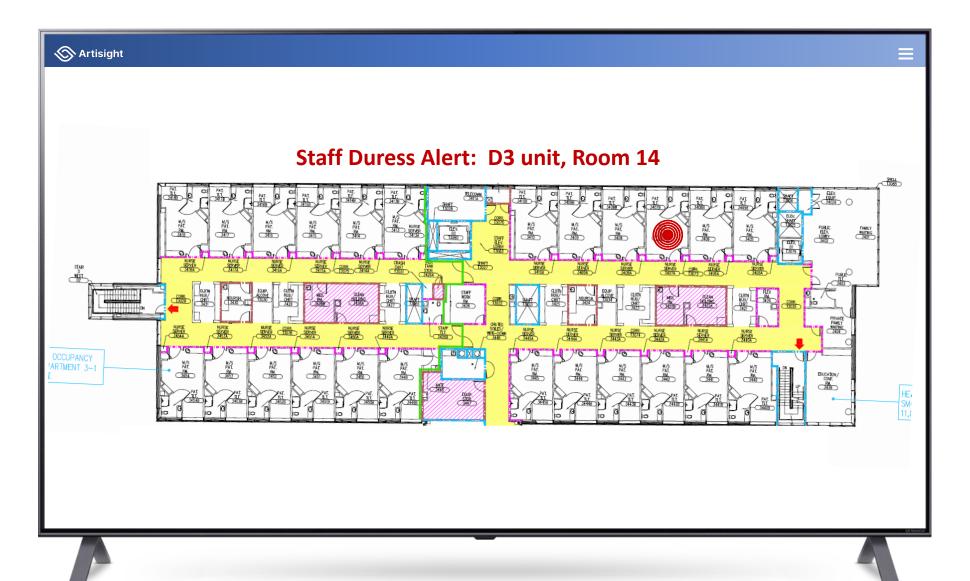




Line Removal Prevention

Handwashing Leapfrog Requirements

Staff Duress

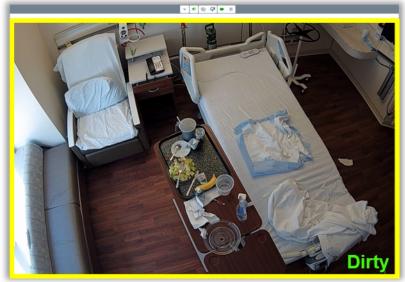


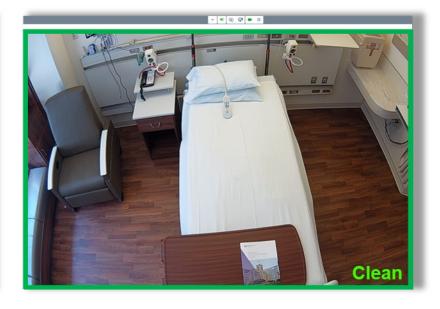
Inventory Management



Anomaly Detection

Capacity Orchestration





Operational & Clinical Decision Support

Article

Health system-scale language models are all-purpose prediction engines

https://doi.org/10.1038/s41586-023-06160-y

Received: 14 October 2022

Accepted: 2 May 2023

Published online: 7 June 2023

Open access

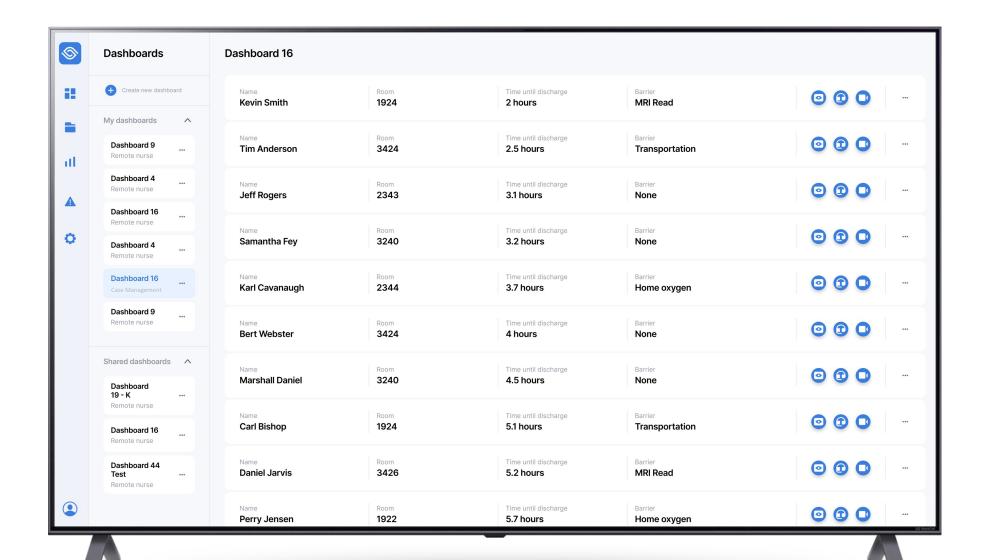
Check for updates

Lavender Yao Jiang^{1,2}, Xujin Chris Liu^{1,3}, Nima Pour Nejatian⁴, Mustafa Nasir-Moin¹, Duo Wang⁵, Anas Abidin⁴, Kevin Eaton⁶, Howard Antony Riina¹, Ilya Laufer¹, Paawan Punjabi⁶, Madeline Miceli⁶, Nora C. Kim¹, Cordelia Orillac¹, Zane Schnurman¹, Christopher Livia¹, Hannah Weiss¹, David Kurland¹, Sean Neifert¹, Yosef Dastagirzada¹, Douglas Kondziolka¹, Alexander T. M. Cheung¹, Grace Yang^{1,2}, Ming Cao^{1,2}, Mona Flores⁴, Anthony B. Costa⁴, Yindalon Aphinyanaphongs^{5,7}, Kyunghyun Cho^{2,8,9,10} & Eric Karl Oermann^{1,2,11⊠}

Artisight Co-founder

Physicians make critical time-constrained decisions every day. Clinical predictive models can help physicians and administrators make decisions by forecasting clinical and operational events. Existing structured data-based clinical predictive models have limited use in everyday practice owing to complexity in data processing, as well as model development and deployment¹⁻³. Here we show that unstructured clinical notes from the electronic health record can enable the training of clinical language models, which can be used as all-purpose clinical predictive engines with low-resistance development and deployment. Our approach leverages recent advances in natural language processing^{4,5} to train a large language model for medical language (NYUTron) and subsequently fine-tune it across a wide range of clinical and operational predictive tasks. We evaluated our approach within our health system for five such tasks: 30-day all-cause readmission prediction, in-hospital mortality prediction, comorbidity index prediction, length of stay prediction, and insurance denial prediction. We show that NYUTron has an area under the curve (AUC) of 78.7–94.9%, with an improvement of 5.36–14.7% in the AUC compared with traditional models. We additionally demonstrate the benefits of pretraining with clinical text,

Operational Decision Support



Clinical Decision Support

Deployment Strategy

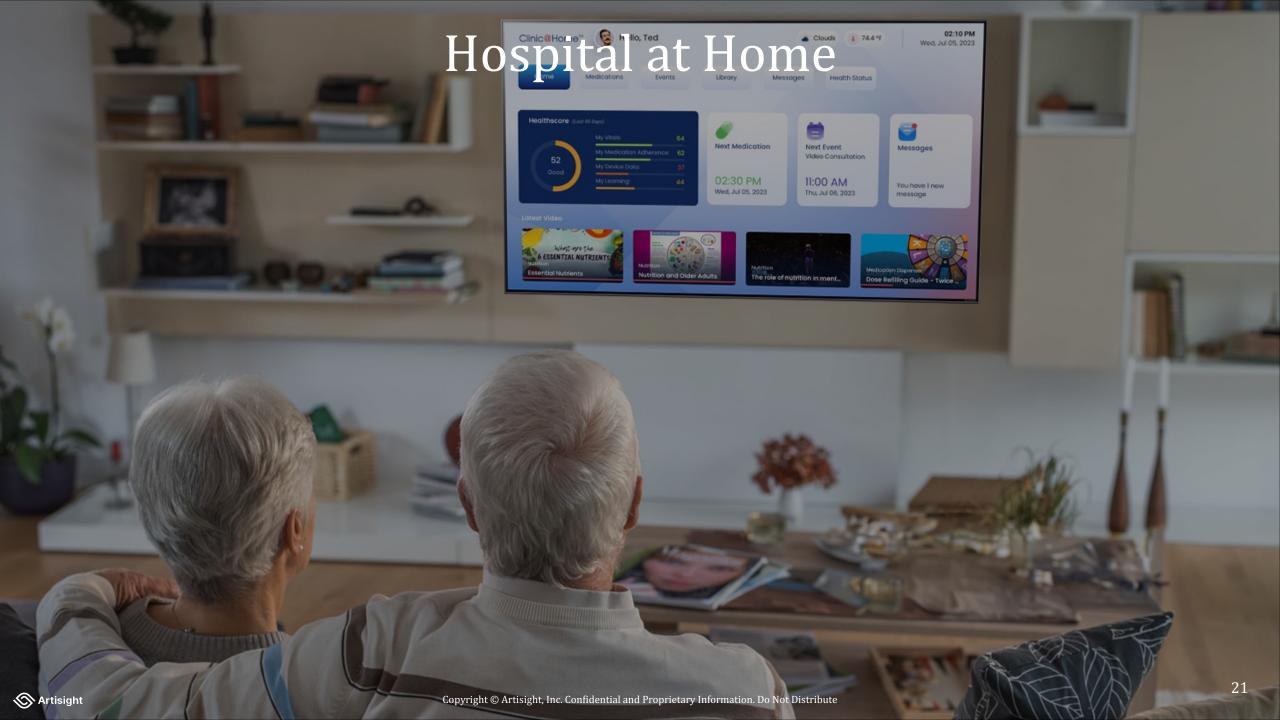
Virtual Staff + AI Co-pilot for Patients at Home (Level 3 to Level 5)

Bedside Staff + Virtual Staff + Ai Co-pilot (Level 3 to Level 5)

Bedside Staff + Virtual Staff (Level 2)

Bedside Staff with On-Unit Patient Monitoring (Level 1)

Traditional Care Team Models (Level 0)



Where Do We Go From Here?

